您要查找的是不是:
- A Simple Proof for the generalization of Cauchy mean value theorem is given. 给出Cauchy微分中值定理的推广的一个简单证明.
- On the proof of the Cauchy mean value theorem,we give a simple method of construction for an auxiliary function. 关于Cauchy中值定理的证明,我们给出辅助函数的一个简单的构造方法。
- In the first part of the paper,the another form of Cauchy mean value theorem is studied. 本文的第一部分研究了Cauchy中值定理的另一种形式。
- This paper deduces an asymptotic property for the "median point" of Cauchy Mean value Theorem by adopting the Taylor Formula and the Law of L?Hospital. 利用泰勒公式和洛必塔法则 ,推得柯西中值定理“中间点”的一个渐近性质
- In the second part of the paper, the generalization of Cauchy mean value theorem is discussed and its weak form is given. 本文的第二部分讨论了Cauchy中值定理的推广,并给出了它的弱形式。
- Abstract: The paper proves Lagrange mean theorem and Cauchy mean theorem with two methods different from that in the textbook, and generalizes Lagrange mean theorem. 摘 要:本文分别用不同于教材的两种方法证明了拉格朗日中值定理及柯西中值定理,并对微分中值定理加以推广。
- We present a general method to prove a class of problems by Rolle's theorem,which need make tricky function by Langrange or Cauchy mean value theorem,and point out our method is feasible for these problems. 提出罗尔定理证明一类存在性问题的方法;采用拉格朗日中值定理或柯西中值定理来证明这类问题往往需要构造精巧的辅助函数;我们还指出了这种方法的一般性.
- This paper proves the converse propositions of the higher order Cauchy Mean Value Theorem and higher order Lagrange Mean Value Theorem under concave and convex function and strictly concave and convex function. 在函数凹凸和严格凹凸的条件下 ,文章引出并证明了高阶Cauchy中值定理和高阶Lagrange中值定理的 4个逆命题。
- This paper provides an inference of Rolle mean value theorem and a new structure method of auxiliary function so as to prove Lagrange mean value theorem and Cauchy mean value theorem. 文章给出罗尔中值定理的一个推论及给出辅助函数新的构造方法,来证明拉格朗日中值定理和柯西中值定理。
- Note on Cauchy Mean Value Theorem of Integral Type 积分型Cauchy中值定理的一个注记
- Another Proof for Cauchy Mean Value Theorem Cauchy中值定理的又一证法
- Generalization of Cauchy Mean Value Theorem CAUCHY微分中值定理的推广
- Generalized expression of Cauchy mean value theorem Cauchy中值定理的一般形式
- The Note for the Cauchy Mean Value Theorem 关于柯西中值定理的一个注记
- Cauchy mean value theorem of integral type 积分型Cauchy中值定理
- Do you mean say we are met for a thunder storm? 你肯定我们会遇到一场雷雨?
- I feel mean for not doing more for my son. 我对没为我儿子多做点事而感到惭愧。
- Defeat in this election would mean he was done for. 这场选举的失败意味着他政治生涯的结束。
- By power we mean the rate of doing work. 我们说功率就是指做功的速率。
- I have no conception of what you mean. 我想不出你的意思是什么。