您要查找的是不是:
- Fibonacci number system 斐波纳契数系
- A number system written to the base two notation. 一种使用以2为基数的记数法的数制。
- We say that the real number system is a continuum. 我们讲,实数系是一个连续集。
- The binary number system has two as its base. 二进制数字系统是以2为基数的。
- Write a function to print the Fibonacci numbers. 写一个函数打印裴波纳契数。
- The number that is raised to various powers to generate the principal counting units of a number system. 乘方数被提升到各种乘方上,产生数字系统内基本计算规则的数字
- Fibonacci number is equivalent to extracting just one item from that potentially infinite list. Fibonacci数的计算相当于只是从可能的无穷列表中提取一项。
- The next page will describe the Base 10 number system. 下一页将描述以10为基底的数字系统。
- By the conclusions above, we can go to another number system. 用以上的结论,我们可以学习另一个数字系统。
- While the calculator is busy computing a large Fibonacci number, notice that you can freely move the form around, minimize, maximize, and even dismiss it. 在计算器计算很大的斐波那契数列时,注意可以自由地移动窗体、最小化、最大化甚至关闭它。
- In this paper, an interesting property of Yang Hui triangle is discovered, it expounds a relation formula between Fibonacci number and binormial coeffcient. 揭示了杨辉三角的一个有趣性质,即它给出了Fibonacci数和二项式系数之间的一个关系式。
- You can choose your own numbering system. 您可以选择自己的编号系统。
- The digits following the prefix must be appropriate for the number system. 跟在前缀后面的数字必须适合于数制。
- All the computers now being used are based on the binary number system. 现在所使用的一切计算机都以二进制为基础。
- Binary digit: The digits used in the binary number system; i.e.: a 0 or a 1. 二进制数字:是二进制数所用的数字;它们是“0”或“1”。
- The following code example demonstrates a ToolStripProgressBar that calculates a sequence of Fibonacci numbers. 下面的代码示例演示计算Fibonacci数列的ToolStripProgressBar。
- When you are through, you will have an application that computes Fibonacci numbers asynchronously. 演练时,将有一个异步计算斐波那契数列的应用程序。
- Fibonacci numbers at least have the virtue of creating a testable proposition; one that they appear to fail. 斐波纳契数的优点在于至少有可测试的主张;一个看起来错了的主张。
- Pertaining to a numbering system with base of sixteen. 用以说明以16为底的记数制。同sexadecimal。
- Discuss earlier researches on such counting functions, as Fibonacci numbers, Catalan numbers and Stirling numbers. 早期对一些计数函数的研究是引入组合学研究方法的重要内容,如Fibonacci数、Catalan数和Stirling数等经典计数函数;
