您要查找的是不是:
- We proves several conclusions on generalized Riemann integral and Lebesgue integral,Cauchy principal value integral and Lebesgue integral. 证明了广义Riemann积分与Lebesgue积分、柯西主值积分与Lebesgue积分关系的若干结论.
- After constrcting the perfective space, prove that this space is just the space of Lebesgue integratiable function, thus explain that Lebesgue integral is the form of the perfective Riemann integral. 在构造了完备化空间之后,证明了该空间就是勒贝格可积函数空间,从而说明了黎曼积分的完备化形式是勒贝格积分。
- Can mathematicians prove the Riemann hypothesis? 数学家可以证明黎曼猜想吗?
- Urysohn lemma on L-closure spaces is valid. 证明了关于L-闭包空间的Urysohn引理。
- I think it would be the Riemann Hypothesis. 我想那一定是“黎曼猜想”。
- Bernhard Riemann pioneered elliptic geometry. 伯恩哈德·黎曼开辟了椭圆几何学。
- Apex of lemma with 3-forked appendage. 外稃具3分叉的附属物的先端。
- This paper describes the feature of Riemann integratiable function, and point out that the space of Riemann integratiable function is not perfect under the meaning of Lebesgue integral. 摘要综述了黎曼可积函数的基本特征,并指出黎曼可积函数列的极限运算在积分意义下是不封闭的。
- We shall prove the following ungainly technical lemma. 我们来证明下面的冗长的技术性的引理。
- In grasses, the lemma, palea, and the flower they enclose. 禾本植物的外稃、内稃及它们包被的花。
- Wiles and/or they must also prove the Riemann Hypothisis!!! 威尔斯和/或他们还必须证明黎曼假设!!!
- The florets of mutant showed degenerated lemma and palea. 小穗顶端的颖花经常不能成熟,表现为颖花始终泛白,不能转绿,因此该突变也影响花序分生组织的发育。
- Palea equaling lemma, ciliate along keels, apex acuminate. 芒约2毫米内稃等于外稃,沿着龙骨,先端渐尖纤毛。
- Where's all my soul brothers? Lemma hear ya'll flow brothers. 我的魂儿到哪里去了,哥们儿?让我听到你们的声浪,哥们儿
- Glumes and lemma glabrous, rarely laxly spinescent hairy. 颖片和外稃无毛,很少稀松的有毛。
- The relationship of this geometry to Riemann's varieties was not clear. 这种几何和Riemann几何的关系是不清楚的。
- Sperner's lemma concerns the decomposition of a simplex into smaller simplices. 斯波纳引理涉及到把一个单纯形分解为较小的单纯形的问题。
- So, do not cry, there is healthy life without the Riemann hypothesis. 所以,不要哭,没有黎曼假设依然能够有健康的生活。
- Note that this proof uses the strong version of the ArtinRees lemma. 请注意这个证明使用了ArtinRees引理的强形式。
- My book on Riemann surfaces, preliminary vesion: notes (comments are welcome). 注意,周三3,4节的课应部分同学的要求已调整到周三晚7:00-9:00,地点:数学所1104。