您要查找的是不是:
- Riemannian integrability 黎曼可积
- Riemannian Geometry and Geometric Analysis 3rd ed. 黎曼几何与几何分析第3版。
- AN INTRODUCTION TO DIFFERENTIABLE MANIFOLDS AND RIEMANNIAN GEOMETRY, REVISED. 微分流形与黎曼几何概论。
- General Riemannian geometry falls outside the boundaries of the program. 一般的黎曼几何在这个纲领所能包括的边界之外。
- This is usually a much stronger requirement than quadratic integrability. 这通常是一个比平方可积更强的要求。
- The text however develops basic Riemannian Geometry, Complex Manifolds, as well as a detailed theory of Semisimple Lie Groups and Symmetric Spaces. 然而课程还将简单介绍了基本的黎曼几何和复流形的知识,并会详细讨论半单李群和对称空间的理论。
- W . M . Boothby: An Introduction to Differentiable Manifolds and Riemannian Geometry . Academic press , INC. 陈维桓:微分流形初步,高等教育出版社.
- It can be excluded with data dependent way based on Riemannian geometry for improved SVM. 基于黎曼几何的SVM数据依赖性改进方法能够剔除支持向量携带的冗余信息,改进SVM的性能。
- Estimations of the moments of the hitting time by Brownian motions on general Riemannian manifolds are also obtained. 估计了一般黎曼流形上的布朗运动关于球面击中时的各阶矩。
- In this paper,the geometry of submanifolds with parally mean curvature vector in a locally symmetric, conformally falt Riemannian manifold is studied. 本文研究局部对称共形平坦黎曼流形中具有平行平均曲率向量的紧致子流形的性质。
- We generalizes the concept of the parallel rays of Euclidian space to a complete noncompact Riemannian manifolds and discuss its properties. 第二部分是讨论了黎曼流形中的一些几何问题,主要是将欧氏空间平行射线的概念推广到一般黎曼流形,并研究其所具有的性质。
- B. L. Chen and X. P. Zhu in [CZ] consider the Ricci flow on complete Riemannian manifolds and get a Bonnet-Myers type result. 进一步的通过考虑完备黎曼流形上的Ricci流,陈兵龙和朱熹平在文[CZ]中还得到了一个判断完备流形一定是紧致流形的Bonnet-Myers型定理。
- The second variation formula of vertical energy functional for a submersion between Riemannian manifolds is calculated with a simple and direct manner. 对于黎曼流形的浸没建立了垂直能量泛函的二阶变分公式,研究强垂直调和映射的稳定性。
- This paper deals with the regular curves in a Riemannian manifold with constant sectional curvature and the affine starlike curves in R2, R3 and R4. 本文研究了具有常截面曲率的黎曼流形中的正则曲线及二、三、四维空间中的仿射星形曲线。
- It is well known that integrability has been an old but significant topic in the field of differential equations. 微分方程的可积性问题一直是微分方程研究领域的一个重要课题。
- This paper obtaines some pinching theorems of compactly minimal Submanifolds in a locally symmetric and conformal flat Riemannian manifold. 对局部对称共形平坦黎曼流形中具有平坦法丛的极小子流形作了一些讨论,得到了极小子流形是全测地的两个充分条件。
- Furthermore,this course is benefitial to study differential topology, Riemannian Geometry, Lie group and Nonlinear Analysis etc. 为进一步学习微分几何、微分拓扑、几何分析、黎曼几何、李群、低维拓扑和非线性分析等相关课程奠定良好的基础,并为阅读当代数学文献创造条件。
- At the same time, other treatments of Riemannian geometry are available at varying levels and interests,so I need not introduce everything. 而中方记载,因多为防御战和溃败,资料极其匮乏,尤其是日方损失和战斗细节,不是编造就是阙如,日方资料正可丰富这方面的记载。
- The lifetimes of conditioned Brownian motions in A_m~d are investigated on topics such as its finiteness and integrability. 研究了无穷区域A_m~d中的条件布朗运动生命时的有限性及可积性。
- As an application, some nonexistence theorems of nonconstant stable harmonic maps from a Finsler manifold to a Riemannian manifold are given. 英文摘要: The first and second variation formulas of the energy functional for a nondegenerate map between Finsler manifolds is derived.