您要查找的是不是:
- As is well known, abstract algebraic geometry has been recently not only the main field of applications of commutative algebra but also the principal incentive of new research in commutative algebra. 书中很多事例,由于涉及外交和他国声誉,故而不能具体点出这些国家的名字和涉及的国家的人员的具体姓名。
- abstract algebraic geometry 抽象代数几何
- Topological Methods in Algebraic Geometry 3rd ed. 代数几何中的拓扑方法第3版。
- Algebraic Geometry I: Complex Projective Varieties by David Mumford. 复代数几何的经典。
- It has developed from two sources: algebraic geometry and algebraic member theory. 它由两个方面发展而来,代数几何和代数数论。
- These are shared concerns in commutative algebra, algebraic geometry, number theory and the computational aspects of these fields. 这些是在交换的代数,代数学的几何学,数论和这些领域的计算的方面方面的被分享的关心。
- Algebraic combinatorics, in which abstract algebraic methods are used to study combinatorial questions. 泛代数,其中财产共同所有代数结构的研究。
- The purpose of this paper is to apply the results about Cousin complexes in commutative algebra to algebraic geometry and give a new treatment for Couin complexes on schemes. 本文应用交换代数中的Cousin复形的一些结果,对概型上的Cousin复形的理论进行了全新的处理,得到了一些有意义的结果。
- Using the knowledge of abstract algebra,the rotation groups of the regular polyhedron are determined. 通过抽象代数知识;求出所有正多面体的旋转群.
- A geometic proof of the Jordan normal form is given by the Euclidean algorithm and the fundamental theorem of algebra, and its works in the algebraic geometry are also given. 摘要文章利用辗转相除法和代数学基本定理得到了若当标准型的几何法证明,并指出了其在代数几何上的作用。
- Josph A Gallian.Contemporary Abstract Algebra[M].University of Minnesota,Duluth. 张禾瑞.;近世代数基础[M]
- The relationship between the total template dependencies and the total join dependencies is probed into by means of abstract algebra. 以抽象代数为工具;探索了全样本依赖与全连接依赖之间的关系.
- This paper introduces the branches and content of algebra, including general algebra, elementary algebra, advanced algebra and abstract algebra. 介绍代数学的分支与内容,包括代数学、初等代数、高等代数、抽象代数。
- Hermann Weyl",,"In these days the angel of topology and the devil of abstract algebra fight for the soul of each individual matehmatical domain. ";"在这些日子里;拓扑这个天使和抽象代数这个魔鬼为各自占有每一块数学领域而斗争著.
- Gave solution of the three Weil conjectures concerning generalizations of the Riemann hypothesis to finite fields. His work did much to unify algebraic geometry and algebraic number theory. 德利涅生于比利时,1978年获奖,他解决代数几何学中联系素数与有限域中代数方程根的个数的韦伊猜想,以简洁清晰的证明解决了这一代数几何的中心问题。
- In recent years, derived categories and derived equivalences have been adapted extensively to a number of subjects beyond algebraic geometry, and have become one of the dominant subjects. 近年来,导出范畴和导出等价广泛应用于众多学科并作为主流课题得到深入研究,产生了许多十分深刻的成果和富有挑战性的问题,反映了当今数学各学科互相渗透互相促进的发展趋势。
- In the same time, from the view point of abstract algebra, the homomorphism between disturbing fuzzy logic operator group and class fuzzy logic operator group is studied. 最后,从代数观点研究了扰动模糊逻辑算子组与经典模糊逻辑算子组之间的同态关系。
- In abstract algebra, a finite field or Galois field (so named in honor of Evariste Galois) is a field that contains only finitely many elements. Finite fields are important in cryptography and coding theory. 只有有限个元素的域称为有限域,或Galois域,它在方程式实验设计和编码理论等方面有很广泛的应用。
- Representation Theory and Algebraic Geometry 我的研究方向是表示论以及代数几何
- This paper gives several ways by knowledge of combinatorial mathematics and abstract algebra,in which determines the number of elements in every conjugacy class of permutation group S_n. 文章利用组合数学和抽象代数的知识给出了确定置换群Sn中每个共轭类所含元素数目的不同方法。