您要查找的是不是:
- two- dimensional coupled harmonic oscillators 二维耦合量子谐振子
- n-D coupling harmonic oscillator n模耦合谐振子
- 2D double coupling harmonic oscillator 双模双耦合谐振子
- Double module double coupling harmonic oscillator 双模双耦合谐振子
- coupling harmonic oscillators 耦合谐振子
- Solution of accurate energy eigenvalues of the common double coupled harmonic oscillators via transformation of representations 利用表象变换精确求解最一般双耦合谐振子的能量本征值
- Elementary Solution of Coupled Harmonic Oscillator 耦合谐振子的初等求解
- coupled harmonic oscillator system 耦合谐振子系统
- The Exact Solution of the Energy Spectrum of Double Module Double Coupling Harmonic Oscillator 一般双模双耦合谐振子能谱的精确解
- Energy Eigenvalue of the Double Dimension Coupling Harmonic Oscillator Was Solved Accurately by Transformation of Coordinates 利用坐标变换精确求解二维耦合谐振子的能量本征值
- coupling harmonic oscillator 耦合谐振子
- No atom behaves precisely like a classical harmonic oscillator. 任何一个原子的性能都不会同经典谐振子完全相同。
- Mesoscopic double resonance circuit with complicated coupling is quantized by the method of harmonic oscillator quantization and linear transformation. 摘要对介观复杂耦合电路作双模耦合谐振子处理,将其量子化。
- Mesoscopic double resonance mutual inductance and capacitance coupling circuit is quantized by the method of harmonic oscillator quantization. 摘要对介观互感电容耦合电路作双模耦合谐振子处理,将其量子化。
- For a harmonic oscillator the energy levels are evenly spaced. 对谐振子来说,能级是等间隔的。
- We point out that the usual quantum enveloping algebra can be realized at classical level in the sense of Poisson bracket. As an example, we give the classical realization of Uq(SU(2)) by a system of classical harmonic oscillators. 通常所谓的量子包络代数可以在经典Poisson括号的意义下实现,以谐振子系统为例,给出U_q(SU(2))的这种经典实现,指出这种q变形伴随着相空间复坐标的Beltrami变形。
- We can work out positions of a harmonic oscillator by numerical methods. 我们可以按数值方法计算简谐振子的位置。
- Thus far we have negative frictional effects in the harmonic oscillator. 到现在为止,我们一直没有考虑谐振子中的摩擦效应。
- Thus far we have negated frictional effects in the harmonic oscillator. 到现在为止,我们一直没有考虑谐和振荡器中的摩擦效应。
- Most materials act like linear harmonic oscillators when light impinges on them, oscillating only when the frequency matches their own internal natural resonant frequency. 当光线撞击非线性材料时,它们的行为就像线性谐振子一样,只有当频率匹配它们的自己的内部自然谐振频率时才会振荡。