您要查找的是不是:
- In addition to procedures to achieve cubic Bezier curve drawing, but also realized the point, line, round mapping, can be used as learning computer graphics algorithm reference. 程序除实现三次Bezier曲线的绘制,还实现了点,直线,圆的绘制,可做为学习计算机图形算法的参考。
- A quadratic or cubic Bezier curve 二次或三次贝式曲线
- A New Fast Algorithm for Drawing Cubic Bezier Curve 三次Bezier曲线绘制的一种新的快速算法
- The Connection of Cubic Bezier Curves & Surfaces 三次Bezier曲线及曲面的连接
- An Improved Geometric Model and Its Realization for Multiple Cubic Bezier Curve Interpolation 多段三次 Bezier 曲线插值几何模型的改进及实现
- cubic Bezier curve 三次Bezier曲线
- rational cubic Bezier curve 有理三次Bézier曲线
- The main use of the Bezier curve algorithm. 主要运用了Bezier曲线算法.;-This is a short picture screen saver
- cubic Bezier curves 三次Bezier曲线
- First I will start out by describing the Bezier curve itself then move on to how to create a Bezier Patch. 首先我会描述贝塞尔曲线再介绍生成贝塞尔曲面。
- The planned path is presented as Bezier curve that can be proved to satisfy the nonholonomic constrains. 提出基于贝塞尔曲线的路径规划方法,以满足机器人的非完整约束。
- Genetic algorithm was applied to optimize the values of the three control points of the Bezier curve. 利用基因演算法可以加速曲线参数最佳化的过程。
- Bezier curve has good character ,because it uses a sequnce of special basic function . 对于贝齐尔曲线,由于它采用一组独特的基函数,所以它具有良好的优良性质。
- G~2 continuous cubic Bezier rational interpolation spline curve G~2连续的保凸插值有理三次Bezier样条曲线的构造
- Bezier curve and B-Spline curve, illumination model and illumination factor template, color models and their transformations are studied in the paper. 文章主要研究了贝塞尔曲线和B样条曲线,光照明模型和光照明因子模板,颜色模型及其之间的转换,给出了具体技术的实现要点和程序框架。
- In addition ,we often encounter a general problem-it is very difficult to describe a complex shape with a single Bezier curve precise . 另外,我们经常会遇到一个普遍问题,就是难以用单一的贝齐尔曲线段描述复杂的形状。
- Bezier curve is a good curve fitting tool with preferable interactive performance,which adapts to construct branch and trunk of trees. 贝赛尔曲线是一种很好的曲线拟和工具,交互性强,适合树木枝干建模。
- Bezier curves have been widely applied to CAGD,and deeper study has been made. Bezier曲线已广泛应用在CAGD上,其理论研究也更加深入。
- As with Bezier curves, clever placement of CVs can restore continuity. 就像用贝赛曲线,如果巧妙的布置CV的位置,那么连续性将被恢复。
- Each subsequent Bezier requires only three more points because the begin point of the second Bezier curve is the same as the end point of the first Bezier curve, and so on. 后面的每个贝塞尔曲线只需要另外三个点,因为第二条贝塞尔曲线的起点和第一条贝塞尔曲线的终点相同,诸如此类。