您要查找的是不是:
- euler polyhedron theorem 欧拉多面体定理
- This leads us to another contribution of Leonhard Euler to graph theory, nam ely Euler's polyhedron theorem or simply Euler's formula. 这是我们引向L·尤拉对图论的另一个贡献,即尤拉多面体定理,或简称尤拉公式。
- This leads us to another contribution of Leonhard Euler to graph theory, namely Euler's polyhedron theorem or simply Euler's formula. 这是我们引向L·尤拉对图论的另一个贡献,即尤拉多面体定理,或简称尤拉公式。
- This leads us to another contribution of Leonhard Euler to graph theory, namely Euler's polyhedron theorem or simply Euler's formula 这是我们引向L?尤拉对图论的另一个贡献,即尤拉多面体定理,或简称尤拉公式。
- Euler polyhedron formula 欧拉可分割空间公式
- A polyhedron, such as a cube, that has six faces. 六面体一个多面体,如有六个面的立方体
- A polyhedron with eight plane surfaces. 八面体有八个面的多面体
- Let us restate the assertions above as a theorem. 我们把上述的断言重新表述为一个定理。
- Something shaped like this polyhedron. 角锥状物形状象这种多面体的东西
- A polyhedron,such as a cube,that has six faces. 六面体一个多面体,如有六个面的立方体
- The second proof of Theorem 26 is due to James. 定理26的第二个证明属于詹姆斯。
- Theorem g is called binomial theorem. 定理g称为二项式定理。
- The small polyhedron is the struggle or changes? 小小的多面体是斗争还是改变?
- This completes the proof of the convexity theorem. 这就完成了凸定理的证明。
- Finally,the generalized Euler eigenvalue and the generalized Gauss Bonnet Theorem and the generalized Euler's formula are given to polyhedra. 最后给出多面体的广义欧拉特征值、广义 Gauss- Bonnet定理及广义欧拉公式 .;这些理论和方法;共同构成实体模型边界表示的拓扑与几何一致性检验的有效工具
- This calculation illustrates the theorem. 这个计算说明了这样一个定理。
- Secondly,a strict definition is given to polyhedra,and the conditions are given for applying Euler's formula and Gauss Bonnet Theorem to polyhedra. 对多面体进行严格的定义 ;给出欧拉公式及 Gauss- Bonnet定理对多面体的应用条件 .
- Joining two vertices of a polyhedron not in the same face. 对顶的连接多面体任意两个不在同一面上的顶点直线
- We call this principle a rule and not a theorem. 我们称这个法则为原理而不称为定理。
- We have thus arrived at the very important theorem. 这样我们就得了一条很重要的法则。