您要查找的是不是:
- homotopy epimorphism functor 同伦满函子
- Keywords cube theorem;equivaiant homotopy epimorphism;equivariant homotopy monomorphism;equivatiant homotopy pullback;equivariant homotopy pushout; 方体定理;等变同伦满态;等变同伦单态;等变同伦拉回;等变同伦推出;
- covering homotopy epimorphism 覆叠同伦满态
- weak homotopy epimorphism 弱同伦满态
- homotopy epimorphism 同伦满态
- This paper defines homology monomorphism, homology epimorphism, homology regular morphism in the category of topological spaces with point by using homology functor. 摘要利用同调函子,在点标拓扑空间范畴中定义了同调单态、同调满态、同调正则态射等概念。
- Abstract: This paper defines homology monomorphism, homology epimorphism, homology regular morphism in the category of topological spaces with point by using homology functor. 文章摘要: 利用同调函子,在点标拓扑空间范畴中定义了同调单态、同调满态、同调正则态射等概念。
- This paper defines homology monomorphism,homology epimorphism,homology regular morphism in the category of topological spaces with point by using homology functor. 利用同调函子,在点标拓扑空间范畴中定义了同调单态、同调满态、同调正则态射等概念。
- Functor returns the marked price as output. 仿函数就返回标签价格作为输出。
- How to use local type as functor? 似乎不能接受局部类型。难道没有变通方法?
- Throws : If the hash functor throws. 抛出:如果散列函数抛出。
- Throws : If the comparison functor throws. 抛出:如果比较函数抛出。
- It is showed that the loop space functor and the suspension functor preserve the properties of homotopy regular. And a series of homotopy equivalence spaces are constructed. 摘要证明了闭路函子和同纬函子保持同伦正则性,同时构造出了一系列同伦等价的空间。
- Method uses two constructs provided by the Apache Functor library. 方法使用由Apache Functor库提供的两个结构。
- Functor takes a binary function and two unary functions as input. 仿函数取一个二元函数和两个一元函数作为输入。
- They are also invariants under the strong Lipschitz homotopy. 我们证明了局部化代数具有稳定性;
- You used this functor twice for binary composition in Listing 4. 在清单4中对二元合成使用这个仿函数两次。
- Using the homotopy mapping theory, a class of nonlinear problems were studied. 摘要利用同伦映射理论,本文研究了一类非线性问题。
- A two-stage homotopy method is then employed to solve the NMI iteratively. 采用两步同伦法迭代来求解非线性矩阵不等式(NMI)。
- The proof shows that any functor which is a left adjoint is right exact. 该证明指出,任一函子,如果是一个左伴随,就右正合。