您要查找的是不是:
- iteration theorem 迭代原理
- Let us restate the assertions above as a theorem. 我们把上述的断言重新表述为一个定理。
- In this paper we give a convergence theorem for PDI(2,q),which we call the q-Step Parallel Halley Disk Iteration. 本文对 q 步并行 Halley 圆盘迭代计算类 PDI(2;q)给出了一个收敛性定理.
- IBLT Solution Techniques. Iteration Stability. 边界层的互动理论的求解技巧。叠代稳定性。
- Supports iteration and indexed access. 支持迭代和索引访问。
- The second proof of Theorem 26 is due to James. 定理26的第二个证明属于詹姆斯。
- Iteration planning starts each iteration. 每次迭代开始前制定迭代计划。
- Theorem g is called binomial theorem. 定理g称为二项式定理。
- If the iteration has no next element. 如果迭代中没有下一个元素抛出。
- This completes the proof of the convexity theorem. 这就完成了凸定理的证明。
- If the iteration has no previous element. 如果迭代中没有前一个元素抛出。
- The iteration count to use to derive the key. 用于派生密钥的迭代数。
- Returns the next element in the iteration. 返回迭代中的下一个元素。
- This calculation illustrates the theorem. 这个计算说明了这样一个定理。
- ITER aims for three principal goals. ITER有三个主要目标。
- We call this principle a rule and not a theorem. 我们称这个法则为原理而不称为定理。
- We have thus arrived at the very important theorem. 这样我们就得了一条很重要的法则。
- The theorem may be explained as follows. 这条原理可以这样来阐述。
- This method helps to obtain a remarkable theorem. 这一方法有助于得出一著名的定理。
- His theorem can be translated into simple terms. 他的定理可用更简单的术语来解释。
