您要查找的是不是:
- Most materials act like linear harmonic oscillators when light impinges on them, oscillating only when the frequency matches their own internal natural resonant frequency. 当光线撞击非线性材料时,它们的行为就像线性谐振子一样,只有当频率匹配它们的自己的内部自然谐振频率时才会振荡。
- The ground state energy and the wave function of a linear harmonic oscillator are solved by Euler equation comforted to functional extremum. 利用泛函极值满足的Euler方程 ;解出了线性谐振子的基态能量和波函数 .
- For small displacement u, the oscillator is a Duffing-type cubic non-linear oscillator, while for large displacement u, the oscillator approximates to a linear harmonic oscillator. 所谓达芬-谐波振子是指当位移远小于1时,系统可化为三次非线性振子,而当位移远大于1时,该系统则化为线性谐波振子。
- linear harmonic oscillators 线性谐振子
- Solving ground state energy and wave function of a linear harmonic oscillator by Euler equation 用泛函Euler方程求解线性谐振子的基态能量和波函数
- linear harmonic oscillator 线性谐振子,直线性谐波发生器
- No atom behaves precisely like a classical harmonic oscillator. 任何一个原子的性能都不会同经典谐振子完全相同。
- We point out that the usual quantum enveloping algebra can be realized at classical level in the sense of Poisson bracket. As an example, we give the classical realization of Uq(SU(2)) by a system of classical harmonic oscillators. 通常所谓的量子包络代数可以在经典Poisson括号的意义下实现,以谐振子系统为例,给出U_q(SU(2))的这种经典实现,指出这种q变形伴随着相空间复坐标的Beltrami变形。
- Mesoscopic double resonance circuit with complicated coupling is quantized by the method of harmonic oscillator quantization and linear transformation. 摘要对介观复杂耦合电路作双模耦合谐振子处理,将其量子化。
- For a harmonic oscillator the energy levels are evenly spaced. 对谐振子来说,能级是等间隔的。
- We can work out positions of a harmonic oscillator by numerical methods. 我们可以按数值方法计算简谐振子的位置。
- Thus far we have negative frictional effects in the harmonic oscillator. 到现在为止,我们一直没有考虑谐振子中的摩擦效应。
- Thus far we have negated frictional effects in the harmonic oscillator. 到现在为止,我们一直没有考虑谐和振荡器中的摩擦效应。
- two- dimensional coupled harmonic oscillators 二维耦合量子谐振子
- From its differential equation, mesoscopic mutual inductance and capacitance coupling double consonance circuit is quantized by means of harmonic oscillator quantization and linear transformation. 摘要从满足的微分方程入手,对介观互感电容耦合电路作双模耦合谐振子处理,利用谐振子量子化的方法将其量子化。
- The case of a harmonic oscillator driven by sinusoidally varying force is an extremely important one in many branches. 在许多领域中受正弦变化力策动的谐振子是一种十分重要的运动。
- The harmonic oscillator is an exceptionally important example of periodic motion. 谐振子在周期运动中是特别重要的。
- In this section we will increase our quantum-mechanical repertoire by solving the Schroedinger equation for the one-dimensional harmonic oscillator. 本节我们将用求解一维谐振子的薛定谔方程以提高我们的量子力学技能。
- Quantum dot gain spectra based on harmonic oscillator model are calculated including and excluding excitons. 基于谐振子模型的量子点能级;计算了包括和排除激子影响时多能级的增益谱.
- The calculation method for the vibrational partition sums Qvib used is the harmonic oscillator approximation. 其中,转动配分函数考虑了离心扭曲修正,振动配分函数采用谐振子近似。
