您要查找的是不是:
- Based on the theory of linear matrix equation AX=B, a formula for solving the Liapunov matrix equation ATX+XA=-E is given. 以线性矩阵方程AX=B的理论为基础,给出李雅普诺夫矩阵方程ATX+XA=-E的求解公式.
- Aim To study the solving methods of linear matrix equations. 摘要目的进一步研究线性矩阵方程的解法。
- And by it, we turn linear matrix equation over quaternion field into linear equations over a number field, and obtain normal solutions of this kind of equation. 得到四元数乘积的一个弱可交换律,并利用它将四元数体上线性矩阵方程转化为数域上的线性方程组,给出此类方程的一般解法。
- On Nonsingular Solution of Linear Matrix Equation 线性矩阵方程的非奇异解
- Using the general singular value decomposition of matrices, the necessary and sufficient conditions for the expressions for the centroskew symmetric solutions of the linear matrix equation A(superscript T)XA=B are established. 摘要利用矩阵的广义奇异值分解,得到了线性矩阵方程A(上标T)XA=B有中心斜对称解的充分必要条件及其通解的表达式。
- Least-square Solution of a Kind of Linear Matrix Equation 一类线性矩阵方程的最小二乘解
- Optimal Approximate Solution of a Class of Linear Matrix Equation 一类线性矩阵方程的最佳逼近解
- The Anti-Symmetric Orthogonal Anti-Symmetric Solution of a Linear Matrix Equation and its Optimal Approximation 一类矩阵方程的反对称正交反对称解及其最佳逼近
- The dimension of solution space of linear matrix equations 线性矩阵方程的解空间维数问题
- linear matrix equation 线性矩阵方程
- CONSISTENCY OF A PAIR OF SIMULTANEOUS LINEAR MATRIX EQUATIONS ?A?1XB?1=D?1, A?2XB?2=D?2? WITH AN APPLICATION 线性矩阵方程组A_1XB_1=D_1,A_2XB_2=D_2的相容性及应用
- These conditions are expressed via the linear matrix inequality(LMI). 基于线性矩阵不等式(LMI)处理方法,给出了分散控制器存在的充分条件。
- So we get two solution with different forms of the matrix equation AX-X(superscript T)B=C. 从而得到了矩阵方程AX-X(上标T)B=C两种不同形式的解。
- An algorithm was constructed to solve the least squares bisymmetric solution of a class of matrix equation. 摘要构造了一种迭代法求一类矩阵方程的最小二乘双对称解。
- Linear matrix equations 线性矩阵方程
- By means of solving matrix equation group, predictive decoupling controller is realized. 通过求解二元一次矩阵方程组,实现了多步预测的解耦控制。
- A new representation formula is given for the algebraic solution of the linear matrix eqution X=EXD + F. 本文提出了一种新的关于线性矩阵方程X=EXD+F的解析算法。 该算法利于在计算机上计算。
- The calculation method is based on node admittance matrix equation and takes LU factorization algorithm. 运行仿真基于节点导纳矩阵方程的迭代求解,采用了LU三角分解法。
- The sufficient condition equals to the solvability of a kind of linear matrix inequality (LMI). 此充分条件等价于一类线性矩阵不等式(LMI)的可解性。
- The explicit formula of desired controller was provided by using the solution to the linear matrix inequalities(LMI). 利用线性矩阵不等式(LMI)的解给出了控制器的设计方法。