您要查找的是不是:
- polyeyelie semigroup 多循环丰群
- The latter two published a monograph on semigroup theory in 1961. 后面二人在 1961 年出版了半群理论的专论。
- A construction theorem for such semigroup is obtained. 给出该类半群的一个构造定理.
- It follows that every nonempty periodic semigroup has at least one idempotent. 得出了所有非空周期半群都有至少一个幂等元。
- A semigroup generated by a single element is said to be monogenic (or cyclic ). 被一个单一元素生成的半群叫做 单基因 的(或 循环 的)。
- The minimal ideal of a commutative semigroup, when it exists, is a group. 交换半群的极小理想如果存在的话是个群。
- A semigroup is said to be periodic if all of its elements are of finite order. 半群被称为 周期性 的,如果所有它的元素有着有限次序。
- For example, every nonempty finite semigroup is periodic, and has a minimal ideal and at least one idempotent. 例如,所有非空有限半群是周期性的,并有一个极小理想和至少一个幂等元。
- Then,two important structural theorem are obtained by the special structure of Clifford semigroup. 其次,根据C lifford半群是群强半格的特殊结构,得到了C lifford半群的幂半群的两个重要的结构定理。
- If S is a semigroup, then the intersection of any collection of subsemigroups of S is also a subsemigroup of S. 如果 S 是半群,则任何 S 的子半群的搜集的交集也是 S 的子半群。
- A semigroup S is called 2-semiband, if every element of S is a product of two idempotents of S. 摘要称半群S为2-半带,若其中每个元素都可以写为S中两个幂等元的积。
- In the meantime, it is proved that each orthodox semigroup with an inverse transversal can be constructed in this way. 同时证明了每个具有逆断面的纯正半群都可以如此构造。
- An example of semigroup with no minimal ideal is the set of positive integers under addition. 没有极小理想的半群的例子是在加法下的正整数集合。
- Green"s relation; Inverse transversal; Abundant semigroup;Quasi-ideal adequate transversal; Left adequate semigroup. 格林关系;逆断面;富足半群;拟理想恰当断面;左恰当半群
- It will become a Delphic semigroup we give some property to the semigroup on which the p-function is defined. 最后,我们证明了半群上的p-函数半群是一个稳定的Hun半群,然后我们定义一类特殊的半群,并证明其上的p-函数半群是一个Delphic半群。
- There is a close relationship between the subgroups of a semigroup and its idempotents. 在半群的子群和它的幂等元之间有密切的联系。
- By using linear operator semigroup theory, it is shown that the solution obtained by the model is well-posedness. 对模型进行了分析,运用线性算子半群理论研究了模型的解的适定性。
- We also obtain that for a finitely generated transcendental semigroup, there is a best generating set. 此外,超越整函数半群有着唯一的最小生成元集。
- The weak regularity of Munn rings and semigroup rings[J].J of Zhejiang University(Science Edition),1999,26(3):22-28. Munn环和半群环的弱正则性[J].;浙江大学学报(理学版);1999;26(3):22-28