您要查找的是不是:
- Weak duality theorem is established under generalized convexity conditions. 在广义凸性条件下,建立了弱对偶性定理。
- The optimality conditions of saddle points, weakly duality theorem, strong duality theorem and converse duality theorem are obtained under convexity assumptions. 其次,在某种凸性假设下,研究严有效意义下鞍点最优性条件、弱对偶性、强对偶性、逆对偶性。
- Finally, we also give the duality theorems under the above generalized F convexity. 最后我们亦讨论了(VP)在正切锥真有效解意义下的对偶性质.
- The Duality Theorem in Field Algebra of G-Spin Model G-旋模型场代数中的对偶定理
- Some weak duality, strong duality and converse duality theorems for multiobjective semi-infnite programming are given under generalized uniform V-Type I invex functions. 摘要在广义一致V-I型不变凸函数的基础上,研究了一类多目标半无限规划的对偶性,得到了若干个弱对偶、强对偶和逆对偶定理。
- Linear Programming Simplex method, dual problems, dual simplex method, duality theorems, complementary slackness, sensitivity analysis and transportation problem. Students taking this course are expected to have knowledge in linear algebra. 线性规划单纯形法,对偶问题,对偶单纯形法,对偶性定理,互补松弛性,灵敏度分析及运输问题。学生选修本科须具备线性代数之知识。
- An improved Mond-Weir type dual for a class of multiobjective optimal controlproblems is constructed.Under vector functional invexity assumption, a number of weak and strong duality theorems are given and proved. 利用向量泛函的不变凸性,改进了Mond-Weir型对偶,给出并证明了弱对偶定理和强对偶定理。
- Lagrange Duality Theorem for Multiobjective Programming with Set Functions 集合函数多目标规划的拉格朗日型对偶定理
- Using the related duality theories of convex analysis, we derived the duality programming, the duality theorems and the Kuhn-Tucker conditions of general multicommodity minimal cost flow problems. 内层规划实际是单品种费用流问题;而外层问题是分离的凸规划;使用相关的凸分析理论;导出了广义多品种最小费用流问题的对偶规划;对偶定理和Kuhn.;Thcker条件
- Duality Theorems of a Kind of Extremum in Topological Vector Spaces 线性拓扑空间中一类极值的对偶性定理
- weak duality theorem 弱对偶定理
- duality theorem 对偶定理
- projective duality theorem 射影对偶性定理
- fundamental duality theorem 基本对偶定理
- Gale's duality theorem 盖尔的对偶定理
- strong duality theorem 强对偶定理
- Gale rs duality theorem 盖尔的对偶定理
- Mond-Weir Duality Theorems of Nonsmooth Generalized Convexity Programming 非光滑广义凸规划的Mond-Weir对偶定理
- Let us restate the assertions above as a theorem. 我们把上述的断言重新表述为一个定理。
- The second proof of Theorem 26 is due to James. 定理26的第二个证明属于詹姆斯。