您要查找的是不是:
- Hilbert-Huang变换Hilbert-Huang transform
- Hilbert-Huang描述子Hilbert-Huang descriptors
- Hilbert-Huang谱分析Hilbert-Huang spectrum analysis
- 二维Hilbert-Huang变换2-D Hilbert-Huang transform
- 我是K.S.T.的Joe Huang。I am Joe Huang from K.S.T.
- 正交Hilbert-Huang变换orthogonal Hilbetr-Huang Transform
- Hilbert-Huang变换(HHT)Hilbert-Huang transform
- Hilbcrt-Huang变换(HHT)Hilbert-Huang transform(HHT)
- 如何保持自信的微笑? linda Huang中文访谈记录How to keep confident smile?
- 如何保持自信的微笑?Linda Huang中文访谈记录How to keep confident smile?
- 好的。您是K.S.T.的Joe Huang先生,还有您的电话号码是5555-1234。"Ok. You are Joe Huang from K.S.T., and your number is 5555 - 1234. "
- 获得了振动频率,合因子,Franck-Condon支距和Huang-Rhys因子等位形坐标参量。The vibrational frequency, coupling factor, Franck-Condon offset ond Huang-Rhys fact or were obtained.
- 希尔伯特-黄变换(HHT)是上世纪末Huang等人首次提出的一种新的信号分析理论。The Hilbert-Huang transform (HHT) is a new theory, which is first developed by Huang et al at the end of last century, for the signal analysis.
- 第三章研究了一种新型的信号处理技术-Hilbert Huang Transform(HHT),并编程实现了该算法。In chapter three, a new signal processing tool-Hilbert Huang Transform(HHT) is introduced in detail.
- 对云南特有植物古林箐秋海棠(Begonia gulinqingensisS.H.Huang et Y.M.Shui)的资源状况进行了全面调查研究。Based on the wild investigations and researches in 2003,2005 and 2006,it showed that Begonia gulinqingensis S.H. Huang et Y. M.
- 我发现,在我的托福成绩报告单上没有把我的名字用罗马字母书写正确,应该是Huang Xiaoliang,不是Huan Xiaoliang。I have found that my name on the TOEFL score report was not correctly romanized. It should be huang Xiaoliang, not huan Xiaoliang.
- 本文用一种全新的时频分析方法:Hilbert-Huang变换(HHT),对30例心音数据进行心音分析实验. 实验结果表明:HHT方法可以有效的分析心音信号;In this paper, a new method using the Hilbert-Huang Transform(HHT) was used to decompose S1 into a series of time-frequency atoms.
- 在简要介绍时程信号的小波分析和Hilbert Huang变换 (HHT)理论的基础上 ,通过地震波和其它时程信号实例 ,对比分析了小波变换和HHT变换结果 .After introducing the brief theories of wavelet analysis and Hibert Huang Transform (HHT), several signal data were analyzed by using HHT and wavelet analysis methods.
- River Huang-抓住这些日子!和你一起工作很刺激,要保持整个团队灵感四射是一项难以置信的工作。我们已经共同完成了许多,但是这些仅仅只是开始而已!River Huang-Seize the day! You are a thrill to work with, and do an incredible job of keeping the team inspired.We have so much yet to accomplish, this is just the beginning!
- 如果TOn中的故障点数和故障边数之和不超过(n-2),Huang等人[J.Parallel andDistributed Computing,62(2002),591-640]证明了:TQn中包含长度为2n-fv的圈,其中fv是故障点数。Huang et al. [J.Parallel and Distributed Computing,62(2002),591-640] proved that TQn contains a cycle of length 2n-fv if the sum of faulty vertices and faulty edges is not more than(n-2),where fv is the number of faultyvertices.