您要查找的是不是:
- Towers([1]) brought up a question :"If L is a Lie algebra all of whose nilpotent subalgebras are abelian , does L split over each of its ideals? 提出一个问题:“如果李代数L的所有幂零子代数都是交换子代数,那么L是否在它的每个理想上可分?
- IS SUBALGEBRA GENERATED BY NILPOTENT ELEMENTS NILPOTENT_? 幂零元生成的子代数是幂零吗?
- maximal nilpotent subalgebra 极大幂零子代数
- nilpotent subalgebra 幂零子代数
- It is proved that the Frattini subalgebra of a complete Lie algebra with abelian nilpotent radical is the zero subalgebra. 证明了特征零代数闭域上的具有交换幂零根基的完备Lie代数的Fratini子代数为零。
- Towers([1]) brought up a question :"If L is a Lie algebra all of whose nilpotent subalgebras are abelian , does L split over each of its ideals?" Towers([1])提出一个问题:“如果李代数L的所有幂零子代数都是交换子代数,那么L是否在它的每个理想上可分?”
- This paper first presents the definition of nilpotent matrix and t... 本文先给出幂零矩阵的定义,然后讨论了它的若干性质。
- Conclusion Every fuzzy subalgebra of a fuzzy P-semisimple BCI-alegbras is also a fuzzy P-semisimple BCI-algebras. 结论说明任一模糊P-半单BCI代数的模糊子代数,也是模糊P-半单BCI-代数。
- In this paper, we study the subalgebra structure of the general linear Lie algebras over commutative rings. 摘要本文研究了含幺可换环上一般线性李代数的子代数结构。
- Let R be a ring,B(R) be a Baer radicial of R,N be the set of all nilpotent elements of R. 设 R 为环,B(R)为 R 的 Baer 根,N 为 R 的全体幂零元构成的集合。
- This paper first presents the definition of nilpotent matrix and then moves on to discuss certain properties of them. 本文先给出幂零矩阵的定义,然后讨论了它的若干性质。
- Also we proved that any proper subalgebra of a standardKac-Moody algebra g(A) is standard, where A1 is any principle submatrix of A (see Theorem 2.6). 证明了典范Kac-Moody代数g(A)的任一真子代数g(A_1)也是典范的,此处A_1是A的任一主子阵(定理2.;6)。
- In this note we describe explicitly the subalgebras of nilpotent matrices and obtain some interesting results. 摘要本文较详细地描述了幂零矩阵子代数,并且获得了一些有趣的结果。
- In this paper, the following results are proved: Let L be transitive on E(G) and abelian or nilpotent, then no nK_2 graph G has disjoint maximal line-independent Sets. 证明了当群关于可迁且为阿贝尔群或幂零群时;每个非图包含两个不相交的最大线独立集.
- Using the notion of coefficient matrix and maximal element.We prove that the Lie algebra is semi-simple and it has no abelian two dimensional subalgebra. 利用系数矩阵和极大项,证明了这类李代数是半单李代数且没有二维交换子代数。
- We reprove the following theorem with a simpler means:Theorem: let A is the solvable algebra, then A is the local nilpotent algebra. 用一种简单的方法重新证明了以下定理:定理:假设A是可解的交错代数;则A是局部幂零的交错代数.
- By means of the equality it is simpler to prove some properties of the adjoint matrix,especially for the idempotent and nilpotent matrices. 此外;应用这一等式;十分简洁地证明了关于伴随矩阵的若干性质.;尤其是关于幂等和幂零阵的伴随阵的性质证明
- As special forms of matrixes, nilpotent matrix plays a key role not only in the theory of matrix but also in actual application. 幂零矩阵作为特殊矩阵无论在矩阵理论方面,还是在实际应用方面都有重要的意义。
- Secondly, one construction of Cartesian authentication code from norm form of one class of nilpotent matrices over finite field is presented and its size parameters are computed. 第二部分利用有限域F_q上一类幂零阵的相似标准形,构作了一个笛卡尔认证码,并计算出该码的所有参数。
- The basic properties of matrix subalgebra were investiaged, the matrix subalgebra was generated by a single matrix, all maximal ideals were classified, the necessary and sufficient conditions for the subalgebra to be semisimple algebra were given. 摘要研究了由一个矩阵生成的拒阵子代数的基本性质,给出了其极大理想的完全分类及这类子代数是半单代数的充要条件。