您要查找的是不是:
- 二阶Neumann边值问题second order Neumann boundary value problem
- 反极大值比较原理和二阶Neumann边值问题解的唯一性Anti-maximum Comparison Principle and the Uniqueness Conditions for Second Order Neumann Boundary Value Problems
- 上下解反序条件下二阶泛函微分方程Neumann边值问题解的存在性条件Existence Conditions for Second Order Neumann Boundary Value Problems of Functional Differential Equations with Upper and Lower Solutions in the Reverse Order
- Neumann边值问题Neumann boundary value problem
- Neumann边值Neumann boundary value
- 四阶Neumann边值问题pourth order neumann boundary value problem
- 齐次Neumann边值homogeneous Neumann boundary value
- 六阶Neumann边值问题six-order Neumann boundary value problem
- 二阶边值问题second-order boundary value problem
- RH边值问题RH boundary value problems
- 半正Neumann边值问题的解和正解的存在性与多解性Existence and Multiplicity of Solutions and Positive Solutions for Semipositive Neumann Boundary Value Problems
- 间断边值问题discontinuous boundary value problems
- 周期边值问题periodic boundary value problem
- 四点边值问题four-point boundary value problem
- 与广义p-Laplace算子相关的非线性Neumann边值问题解的存在性The Existence of Solution of Nonlinear Neumann Boundary Value Problem Involving the Generalized p-Laplacian Operator
- 初值-边值问题initial-boundary-value problem
- 三阶边值问题third-order boundary value problem
- 高阶边值问题high - order boundary value problem
- 定理1:假设条件(H_2)-(H_4)成立,则奇异非线性二阶微分方程Neumann边值问题(1)-(2)存在正解。The main result of this paper :Theorem 1 Under the assumption (H1) - (H4),the second-order Neumann boundary value problem (1) - (2) has positive solution.
- 泛函边值问题functional boundary value problem